结果显示,我国城镇供水管网静漏失率达到12~13%,远远超过了要求城市漏失率控制在6%以下的标准,所以管道防腐一直是我们当前一个热门的课题。
球墨铸件的注意事项
1.加入孕育剂进行孕育处理
2.球墨铸件流动性较差,收缩较大,因此需要较高的浇注温度及较大的浇注系统尺寸,合理应用冒口,冷铁,采用顺序凝固原则。
3.进行热处理
4.严格要求化学成分,对原铁液要求的碳硅含量比灰铸铁高,降低球墨铸件中锰,磷,硫的含量
5.铁液出炉温度比灰铸铁高,以补偿球化,孕育处理时铁液温度的损失
6.进行球化处理,即往铁液中添加球化剂


(一)、球墨铸铁热处理过程的特点
球墨铸铁由于具有良好的强韧性,因而作为结构材料已得到广泛的应用。近十余年来,马氏体基体球墨铸铁、贝氏体基体球墨铸铁及马氏体一贝氏体基体球墨铸铁作为耐磨材料也已被广泛应用于磨球、衬板、锤头及过流部件等耐磨件。因此,球墨铸铁热处理已成为提高这些耐磨件寿命的重要途径。
球墨铸铁件热处理与钢的热处理基本相似,但由于有石墨相的存在,而且其含硅量较高,因此,又有它本身的特点。
(1)球墨铸铁是多元合金,主要是铁一碳一硅当、元素,因此,可以近似用Fe-C-Si三元合金相图来研究其固态相变过程。与钢不同,球墨铸铁共析转变是发生在一个相当宽的温度范围内,拦日之个温度范围内同时存在着铁素体、奥氏体和石墨(或渗碳体)三相的稳定(或介稳定)平衡。在马氏体转变的各个不同温度不铁素体和奥氏体有不同的含碳量,所以,控制不同的加热温度和保温时间,淬火(正火)后可以获得不同比例的铁素体和马氏体(珠光体),从而可以大幅度调整球墨铸铁的力学性能。需要指出,在这个温度区间加热所得到的铁素体,其冷却后的形态多为条块状、破碎状和网状,与通常的牛眼状铁素体不同。这种形态的铁素体有利于塑性和韧性的提高。
(2)球墨铸铁化学成分对其临界温度有很大的影响。由于对球墨铸件性能要求不同,其含硅量的变化也较大,而硅对临界温度范围的影响是很大的。一般来讲,含硅量提高1%可提高共析转变的上临界点约40℃,可提高其下临界点约30℃。由此可见:在加热时,硅对上临界点的影响比下临界点的影响为大,同时硅也促使共析转变的临界温度范围变宽。而锰却降低共析转变稳定,锰含量增加100,加热时临界点降低15~18℃,冷却时临界点降低40~50℃。对于普通球墨铸铁与马氏体球墨铸铁,由于锰含量控制较低,故锰对共析转变临界温度的影响可忽略不计。但对以硅、锰为主要合金元素的贝氏体球墨铸铁,锰的影响不可忽略。
(3)在热处理过程中,球状石墨作为球铁中的一个相,也参与相变过程。石墨的存在相当于一个“贮碳库”,在加热时,球状石墨表面的碳会部分溶入奥氏体中,供应其平衡所必需的碳量,加热温度愈高,球状石墨溶入奥氏体的碳量愈高,故可以通过控制加热温度来控制奥氏体的含碳量。淬火冷却后可以得到含碳量不同的马氏体。而奥氏体化后的球墨铸铁在共析转变温度以下缓慢冷却时又会析出石墨,或沉积在原有石墨表面上,或形成退火石墨。如冷却速度较快时,其将沿奥氏体晶界析出网状渗碳体。
从上述球墨铸铁热处理相变特点来看,热处理时加热温度的选择是相当重要的。由于球墨铸铁含硅量较高,其共析转变临界温度较高,同时石墨的导热性较差,故石墨向奥氏体中的溶解较渗碳体困难。因此,球墨铸铁热处理时,加热温度较高,保温时间也较长。随着奥氏体化温度的提高,奥氏体含碳量增加,如图3所示。而随着奥氏体化温度增高奥氏体溶碳量增加,则淬火冷却后残余奥氏体数量也较多。球墨铸铁在不同加热温度下淬火,经过250℃回火后其硬度和冲击韧性,随着奥氏体化温度升高,其硬度趋向提高,冲击韧性趋向降低。不过奥氏体化温度进一步提高,其硬度增高与冲击韧性降低的趋势则趋向缓和。
(二)、球墨铸铁用于汽车构件生产
白口铁经长时间退火,其碳化铁转变为团絮状石墨,获得可锻铸铁。在球墨铸铁未发明以前,可锻铸铁是广为应用的一种材料,因此白口铸铁的生产也盛极一时。1997年美国可锻铁件的2/3属汽车工业所用,其中包括发动机连杆。
由于铁素体球铁的基体金相与可锻铸铁相同,而球铁件可以获得圆整度更高的石墨,并且强度比可锻铸件高,因此二汽在1965年筹建期,便大胆设想以稀土镁铁素体球铁取代可锻铸铁。这在我国当时的汽车业中并无实践先例,曾引起很大疑虑和争论。当时产品的设计图纸采取了灵活措施,许多种零件的材料定为KT35一10可锻铸铁或QT40一10球墨铸铁,在工艺设备选用上只略减退火炉台数,而保留增加炉数的车间面积。二汽铸造二厂经多年技术开发,到1985年每车近半吨的零件,已采用铁素体球铁制造。经汽车长期行驶考验,证明其中大部分还可以铸态应用,完全省去了退火工序。只有占6%总重的薄壁小铸件,由于浇泪括冷却速度快,难以完全避免白口的生成,仍保留可锻铸铁牌号。
二汽20世纪60年代中期在汽车上开发铁素体球铁件是与世界趋势一致的。例如,我国川汽20世纪60年代初从法国引进技术的贝利埃重型车系列时其后桥壳采用铸钢件,但当1980年二汽组团去法国访问时,发现该系列车后桥壳已成为铁素体球铁件。20世纪80年代初,德国奔驰厂与MAN厂宣传其共同开发的后桥壳是锻造的半壳,采用电子束焊成一体,但德国MAN厂在总装配线上发现其多品种重型卡车的各种后桥壳都为球墨铸件。由此可见,国际汽车业的汽车底盘承受力大的后桥壳已纷纷以铁素体球铁件取代了铸钢件或锻钢件。20世纪90年代二汽从法国雪铁龙公司引进富康轿车时发现,最重要的保安件前轮转向节是铁素体球铁件。对该铸件有极严格的质量要求,包括设专用无损探伤自动化检测线对球墨铸铁件进行100%的三项检测:电涡流测定硬度、磁力探查表面无裂纹和声波测球化率。日本本田雅阁轿车转向节也有采用球铁材质的报导。
曾为我国可锻铸铁较大产家的第一汽车集团公司在20世纪80年代进行产品换型升级时,毅然将年产数万吨的可锻铸铁车间改造为铁素体球铁生产线,放弃了可锻铸铁件的生产。
泊头市艺兴铸造厂(http://www.btyxzz.com)主要产品有搅拌机配件、灰铸铁件、减速机齿轮、机械加工、端面铣床加工等业务。